Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Heliyon ; 8(6): e09537, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1867180

ABSTRACT

Vaccination represents one of the fundamentals in the fight against SARS-CoV-2. Myocarditis has been reported as a rare but possible adverse consequence of different vaccines, and its clinical presentation can range from mild symptoms to acute heart failure. We report a case of a 29-year-old man who presented with fever and retrosternal pain after receiving SARS-CoV-2 vaccine. Cardiac magnetic resonance imaging and laboratory data revealed typical findings of acute myocarditis.

2.
Acad Radiol ; 28(8): 1048-1057, 2021 08.
Article in English | MEDLINE | ID: covidwho-1141556

ABSTRACT

OBJECTIVES: To evaluate the potential of a fully automatic artificial intelligence (AI)-driven computed tomography (CT) software prototype to quantify severity of COVID-19 infection on chest CT in relationship with clinical and laboratory data. METHODS: We retrospectively analyzed 50 patients with laboratory confirmed COVID-19 infection who had received chest CT between March and July 2020. Pulmonary opacifications were automatically evaluated by an AI-driven software and correlated with clinical and laboratory parameters using Spearman-Rho and linear regression analysis. We divided the patients into sub cohorts with or without necessity of intensive care unit (ICU) treatment. Sub cohort differences were evaluated employing Wilcoxon-Mann-Whitney-Test. RESULTS: We included 50 CT examinations (mean age, 57.24 years), of whom 24 (48%) had an ICU stay. Extent of COVID-19 like opacities on chest CT showed correlations (all p < 0.001 if not otherwise stated) with occurrence of ICU stay (R = 0.74), length of ICU stay (R = 0.81), lethal outcome (R = 0.56) and length of hospital stay (R = 0.33, p < 0.05). The opacities extent was correlated with laboratory parameters: neutrophil count (NEU) (R = 0.60), lactate dehydrogenase (LDH) (R = 0.60), troponin (TNTHS) (R = 0.55) and c-reactive protein (CRP) (R = 0.51). Differences (p < 0.001) between ICU group and non-ICU group concerned longer length of hospital stay (24.04 vs. 10.92 days), higher opacity score (12.50 vs. 4.96) and severity of laboratory data changes such as c-reactive protein (11.64 vs. 5.07 mg/dl, p < 0.01). CONCLUSIONS: Automatically AI-driven quantification of opacities on chest CT correlates with laboratory and clinical data in patients with confirmed COVID-19 infection and may serve as non-invasive predictive marker for clinical course of COVID-19.


Subject(s)
Artificial Intelligence , COVID-19 , Tomography, X-Ray Computed , COVID-19/diagnostic imaging , Humans , Lung , Middle Aged , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL